85 research outputs found

    A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy

    Get PDF
    A real-world newspaper distribution problem with recycling policy is tackled in this work. In order to meet all the complex restrictions contained in such a problem, it has been modeled as a rich vehicle routing problem, which can be more specifically considered as an asymmetric and clustered vehicle routing problem with simultaneous pickup and deliveries, variable costs and forbidden paths (AC-VRP-SPDVCFP). This is the first study of such a problem in the literature. For this reason, a benchmark composed by 15 instances has been also proposed. In the design of this benchmark, real geographical positions have been used, located in the province of Bizkaia, Spain. For the proper treatment of this AC-VRP-SPDVCFP, a discrete firefly algorithm (DFA) has been developed. This application is the first application of the firefly algorithm to any rich vehicle routing problem. To prove that the proposed DFA is a promising technique, its performance has been compared with two other well-known techniques: an evolutionary algorithm and an evolutionary simulated annealing. Our results have shown that the DFA has outperformed these two classic meta-heuristics

    An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems

    Get PDF
    Bat algorithm is a population metaheuristic proposed in 2010 which is based on the echolocation or bio-sonar characteristics of microbats. Since its first implementation, the bat algorithm has been used in a wide range of fields. In this paper, we present a discrete version of the bat algorithm to solve the well-known symmetric and asymmetric traveling salesman problems. In addition, we propose an improvement in the basic structure of the classic bat algorithm. To prove that our proposal is a promising approximation method, we have compared its performance in 37 instances with the results obtained by five different techniques: evolutionary simulated annealing, genetic algorithm, an island based distributed genetic algorithm, a discrete firefly algorithm and an imperialist competitive algorithm. In order to obtain fair and rigorous comparisons, we have conducted three different statistical tests along the paper: the Student's tt-test, the Holm's test, and the Friedman test. We have also compared the convergence behaviour shown by our proposal with the ones shown by the evolutionary simulated annealing, and the discrete firefly algorithm. The experimentation carried out in this study has shown that the presented improved bat algorithm outperforms significantly all the other alternatives in most of the cases

    Hybrid quantum-classical heuristic for the bin packing problem

    Get PDF
    Optimization problems is one of the most challenging applications of quantum computers, as well as one of the most relevants. As a consequence, it has attracted huge efforts to obtain a speedup over classical algorithms using quantum resources. Up to now, many problems of different nature have been addressed through the perspective of this revolutionary computation paradigm, but there are still many open questions. In this work, a hybrid classical-quantum approach is presented for dealing with the one-dimensional Bin Packing Problem (1dBPP). The algorithm comprises two modules, each one designed for being executed in different computational ecosystems. First, a quantum subroutine seeks a set of feasible bin configurations of the problem at hand. Secondly, a classical computation subroutine builds complete solutions to the problem from the subsets given by the quantum subroutine. Being a hybrid solver, we have called our method H-BPP. To test our algorithm, we have built 18 different 1dBPP instances as a benchmarking set, in which we analyse the fitness, the number of solutions and the performance of the QC subroutine. Based on these figures of merit we verify that H-BPP is a valid technique to address the 1dBPP.QUANTEK project (ELKARTEK program from the Basque Government, expedient no. KK-2021/00070) Spanish Ramón y Cajal Grant RYC-2020-030503- I QMiCS (820505) and OpenSuperQ (820363) of the EU Flagship on Quantum Technologies EU FET Open project Quromorphic (828826) and EPIQUS (899368

    AT-MFCGA: An Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm for Evolutionary Multitasking

    Get PDF
    Transfer Optimization is an incipient research area dedicated to solving multiple optimization tasks simultaneously. Among the different approaches that can address this problem effectively, Evolutionary Multitasking resorts to concepts from Evolutionary Computation to solve multiple problems within a single search process. In this paper we introduce a novel adaptive metaheuristic algorithm to deal with Evolutionary Multitasking environments coined as Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-MFCGA). AT-MFCGA relies on cellular automata to implement mechanisms in order to exchange knowledge among the optimization problems under consideration. Furthermore, our approach is able to explain by itself the synergies among tasks that were encountered and exploited during the search, which helps us to understand interactions between related optimization tasks. A comprehensive experimental setup is designed to assess and compare the performance of AT-MFCGA to that of other renowned Evolutionary Multitasking alternatives (MFEA and MFEA-II). Experiments comprise 11 multitasking scenarios composed of 20 instances of 4 combinatorial optimization problems, yielding the largest discrete multitasking environment solved to date. Results are conclusive in regard to the superior quality of solutions provided by AT-MFCGA with respect to the rest of the methods, which are complemented by a quantitative examination of the genetic transferability among tasks throughout the search process

    MO-MFCGA: Multiobjective multifactorial cellular genetic algorithm for evolutionary multitasking

    Get PDF
    Multiobjetive optimization has gained a considerable momentum in the evolutionary computation scientific community. Methods coming from evolutionary computation have shown a remarkable performance for solving this kind of optimization problems thanks to their implicit parallelism and the simultaneous convergence towards the Pareto front. In any case, the resolution of multiobjective optimization problems (MOPs) from the perspective of multitasking optimization remains almost unexplored. Multitasking is an incipient research stream which explores how multiple optimization problems can be simultaneously addressed by performing a single search process. The main motivation behind this solving paradigm is to exploit the synergies between the different problems (or tasks) being optimized. Going deeper, we resort in this paper to the also recent paradigm Evolutionary Multitasking (EM). We introduce the adaptation of the recently proposed Multifactorial Cellular Genetic Algorithm (MFCGA) for solving MOPs, giving rise to the Multiobjective MFCGA (MO-MFCGA). An extensive performance analysis is conducted using the Multiobjective Multifactorial Evolutionary Algorithm as comparison baseline. The experimentation is conducted over 10 multitasking setups, using the Multiobjective Euclidean Traveling Salesman Problem as benchmarking problem. We also perform a deep analysis on the genetic transferability among the problem instances employed, using the synergies among tasks aroused along the MO-MFCGA search procedure

    Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems

    Get PDF
    Researchers who investigate in any area related to computational algorithms (both dening new algorithms or improving existing ones) usually nd large diculties to test their work. Comparisons among dierent researches in this eld are often a hard task, due to the ambiguity or lack of detail in the presentation of the work and its results. On many occasions, the replication of the work conducted by other researchers is required, which leads to a waste of time and a delay in the research advances. The authors of this study propose a procedure to introduce new techniques and their results in the eld of routing problems. In this paper this procedure is detailed, and a set of good practices to follow are deeply described. It is noteworthy that this procedure can be applied to any combinatorial optimization problem. Anyway, the literature of this study is focused on routing problems. This eld has been chosen because of its importance in real world, and its relevance in the actual literature

    Community Detection in Networks using Bio-inspired Optimization: Latest Developments, New Results and Perspectives with a Selection of Recent Meta-Heuristics

    Get PDF
    Detecting groups within a set of interconnected nodes is a widely addressed prob- lem that can model a diversity of applications. Unfortunately, detecting the opti- mal partition of a network is a computationally demanding task, usually conducted by means of optimization methods. Among them, randomized search heuristics have been proven to be efficient approaches. This manuscript is devoted to pro- viding an overview of community detection problems from the perspective of bio-inspired computation. To this end, we first review the recent history of this research area, placing emphasis on milestone studies contributed in the last five years. Next, we present an extensive experimental study to assess the performance of a selection of modern heuristics over weighted directed network instances. Specifically, we combine seven global search heuristics based on two different similarity metrics and eight heterogeneous search operators designed ad-hoc. We compare our methods with six different community detection techniques over a benchmark of 17 Lancichinetti-Fortunato-Radicchi network instances. Ranking statistics of the tested algorithms reveal that the proposed methods perform com- petitively, but the high variability of the rankings leads to the main conclusion: no clear winner can be declared. This finding aligns with community detection tools available in the literature that hinge on a sequential application of different algorithms in search for the best performing counterpart. We end our research by sharing our envisioned status of this area, for which we identify challenges and opportunities which should stimulate research efforts in years to come

    Relationship Between Legal Blindness and Depression

    Get PDF
    The higher prevalence rates of depression in visually-impaired individuals than the general population indicates that the condition per se increases the risk of depression. A person that is aware of the progressive loss of visual acuteness may have feelings of insecurity, anxiety, loss of independence and changes in social functioning, leading to depression. Several studies assessing the association between depressive symptoms and severity of vision loss have yielded inconsistent results. Some do not show any association, whereas others reported that depression severity is higher in those with substantial vision loss. The general aim of this manuscript was to determine the prevalence of depression in patients diagnosed with legal blindness in the Eye Care Service at the Hospital Córdoba between June 2016 and June 2017. The study sample consisted of 41 patients. The level of depression was assessed using the Zung scale and the degree of dependence in daily life activities was defined using the Barthel index. Data was anonymized for inclusion in a computer database and statistical confidentiality was protected. Data was analyzed using InfoStat statistical software. The results revealed a relation between legal blindness, degrees of dependency and depressive symptoms in patients of the Eye Care Service of the Hospital Córdoba. It is very important for health professionals to be trained to detect early signs and symptoms of depression and have the necessary tools for such an approach. Epub: October 1, 2019

    Relationship Between Legal Blindness and Depression

    Get PDF
    The higher prevalence rates of depression in visually-impaired individuals than the general population indicates that the condition per se increases the risk of depression. A person that is aware of the progressive loss of visual acuteness may have feelings of insecurity, anxiety, loss of independence and changes in social functioning, leading to depression. Several studies assessing the association between depressive symptoms and severity of vision loss have yielded inconsistent results. Some do not show any association, whereas others reported that depression severity is higher in those with substantial vision loss. The general aim of this manuscript was to determine the prevalence of depression in patients diagnosed with legal blindness in the Eye Care Service at the Hospital Córdoba between June 2016 and June 2017. The study sample consisted of 41 patients. The level of depression was assessed using the Zung scale and the degree of dependence in daily life activities was defined using the Barthel index. Data was anonymized for inclusion in a computer database and statistical confidentiality was protected. Data was analyzed using InfoStat statistical software. The results revealed a relation between legal blindness, degrees of dependency and depressive symptoms in patients of the Eye Care Service of the Hospital Córdoba. It is very important for health professionals to be trained to detect early signs and symptoms of depression and have the necessary tools for such an approach. Epub: October 1, 2019

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques
    corecore